Все секреты медицины

Все секреты медицины

» » Найти наибольшую высоту треугольника. Высота треугольника. Визуальный гид (2020) Как найти высоту зная три стороны

Найти наибольшую высоту треугольника. Высота треугольника. Визуальный гид (2020) Как найти высоту зная три стороны

Как найти наибольшую или наименьшую высоту треугольника? Чем меньше высота треугольника, тем больше проведенная к ней высота. То есть наибольшая из высот треугольника — та, которая проведена к его наименьшей стороне. — та, которая проведена к наибольшей из сторон треугольника.

Чтобы найти наибольшую высоту треугольника , можно площадь треугольника разделить на длину стороны, к которой проведена эта высота (то есть на длину наименьшей из сторон треугольника).

Соответственно, для нахождения наименьшей высоты треугольника можно площадь треугольника разделить на длину его наибольшей стороны.

Задача 1.

Найти наименьшую высоту треугольника, стороны которого равны 7 см, 8 см и 9 см.

Дано:

AC=7 см, AB=8 см, BC=9 см.

Найти: наименьшую высоту треугольника.

Решение:

Наименьшая из высот треугольника — та, которая проведена к его наибольшей стороне. Значит, нужно найти высоту AF, проведенную к стороне BC.

Для удобства записи введем обозначения

BC=a, AC=b, AB=c, AF=ha.

Высота треугольника равна частному от деления удвоенной площади треугольника на сторону, к которой эта высота проведена. можно найти с помощью формулы Герона. Поэтому

Вычисляем:

Ответ:

Задача 2.

Найти наибольшую сторону треугольника со сторонами 1 см, 25 см и 30 см.

Дано:

AC=25 см, AB=11 см, BC=30 см.

Найти:

наибольшую высоту треугольника ABC.

Решение:

Наибольшая высота треугольника проведена к его наименьшей стороне.

Значит, нужно найти высоту CD, проведенную к стороне AB.

Для удобства обозначим

Прежде всего, треугольник – это геометрическая фигура, которая образуется тремя, не лежащими на одной прямой, точками, которые соединены тремя отрезками. Чтобы найти, чему равна высота треугольника, необходимо, в первую очередь, определить его тип. Треугольники различаются величиной углов и количеством равных углов. По величине углов треугольник может быть остроугольным, тупоугольным и прямоугольным. По числу равных сторон выделяют равнобедренный, равносторонний и разносторонний треугольники. Высота – это перпендикуляр, который опущен на противоположную сторону треугольника из его вершины. Как найти высоту треугольника?

Как найти высоту равнобедренного треугольника

Для равнобедренного треугольника характерно равенство сторон и углов при его основании, поэтому проведенные к боковым сторонам высоты равнобедренного треугольника всегда равны друг другу. Также высота данного треугольника одновременно является медианой и биссектрисой. Соответственно, высота делит основание пополам. Рассматриваем получившийся прямоугольный треугольник и находим сторону, то есть высоту равнобедренного треугольника, посредством теоремы Пифагора. Воспользовавшись следующей формулой, вычисляем высоту: H = 1/2*√4*a 2 − b 2 , где: а - боковая сторона данного равнобедренного треугольника, b - основание данного равнобедренного треугольника.

Как найти высоту равностороннего треугольника

Треугольник с равными сторонами называется равносторонним. Высоту такого треугольника выводят из формулы высоты равнобедренного треугольника. Получается: H = √3/2*a, где a - сторона данного равностороннего треугольника.

Как найти высоту разностороннего треугольника

Разносторонним называют треугольник, у которого какие-либо две стороны не являются равными друг другу. В таком треугольнике все три высоты будут разными. Рассчитать длины высот можно при помощи формулы: H = sin60*a = a*(sgrt3)/2, где а - сторона треугольника или сначала посчитать площадь конкретного треугольника по формуле Герона, которая выглядит как: S = (p*(p-c)*(p-b)*(p-a))^1/2, где а, b, с – стороны разностороннего треугольника, а p – его полупериметр. Каждая высота = 2*площадь/сторону

Как найти высоту прямоугольного треугольника

Прямоугольный треугольник имеет один прямой угол. Высота, которая проходит к одному из катетов, в то же время является вторым катетом. Поэтому чтобы найти лежащие на катетах высоты, нужно воспользоваться изменённой формулой Пифагора: a = √(c 2 − b 2), где a, b - это катеты (a - катет, который необходимо найти), c - длина гипотенузы. Для того, чтобы найти вторую высоту надо поставить полученное значение a на место b. Для нахождения третьей, лежащей внутри треугольника, высоты применяется следующая формула: h = 2s/a, где h - высота прямоугольного треугольника, s - его площадь, a - длина стороны, к которой будет перпендикулярна высота.

Треугольник называется остроугольным в случае, если все его углы острые. В таком случае все три высоты располагаются внутри остроугольного треугольника. Треугольник называется тупоугольным при наличии одного тупого угла. Две высоты тупоугольного треугольника находятся вне треугольника и падают на продолжение сторон. Третья сторона находится внутри треугольника. Высота определяется при помощи все той же теоремы Пифагора.

Общие формулы, как вычисления высоты треугольника

  • Формула для нахождения высоты треугольника через стороны: H= 2/a √p*(p-c)*(p-b)*(p-b), где h - высота, которую нужно найти, а, b и c – стороны данного треугольника, p – его полупериметр, .
  • Формула для нахождения высоты треугольника через угол и сторону: H=b sin y = c sin ß
  • Формула для нахождения высоты треугольника через площадь и сторону: h = 2S/a, где a – это сторона треугольника, а h – построенная к стороне а высота.
  • Формула для нахождения высоты треугольника через радиус и стороны: H= bc/2R.

Треугольника) или проходить вне треугольника у тупоугольного треугольника.

Энциклопедичный YouTube

    1 / 5

    ✪ ВЫСОТА МЕДИАНА БИССЕКТРИСА треугольника 7 класс

    ✪ биссектриса, медиана, высота треугольника. Геометрия 7 класс

    ✪ 7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

    ✪ Медиана, биссектриса, высота треугольника | Геометрия

    ✪ Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис Трушин

    Субтитры

Свойства точки пересечения трех высот треугольника (ортоцентра)

E A → ⋅ B C → + E B → ⋅ C A → + E C → ⋅ A B → = 0 {\displaystyle {\overrightarrow {EA}}\cdot {\overrightarrow {BC}}+{\overrightarrow {EB}}\cdot {\overrightarrow {CA}}+{\overrightarrow {EC}}\cdot {\overrightarrow {AB}}=0}

(Для доказательства тождества следует воспользоваться формулами

A B → = E B → − E A → , B C → = E C → − E B → , C A → = E A → − E C → {\displaystyle {\overrightarrow {AB}}={\overrightarrow {EB}}-{\overrightarrow {EA}},\,{\overrightarrow {BC}}={\overrightarrow {EC}}-{\overrightarrow {EB}},\,{\overrightarrow {CA}}={\overrightarrow {EA}}-{\overrightarrow {EC}}}

В качестве точки E следует взять пересечение двух высот треугольника.)

  • Ортоцентр изогонально сопряжен центру описанной окружности .
  • Ортоцентр лежит на одной прямой с центроидом , центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
  • Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник .
  • Центр описанной ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
  • Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника .
  • Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
  • Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
  • Если О - центр описанной окружности ΔABC, то O H → = O A → + O B → + O C → {\displaystyle {\overrightarrow {OH}}={\overrightarrow {OA}}+{\overrightarrow {OB}}+{\overrightarrow {OC}}} ,
  • Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
  • Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
  • Теорема Гамильтона . Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
  • Следствия теоремы Гамильтона :
    • Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона , имеющих равные радиусы описанных окружностей.
    • Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.
  • В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном - вне треугольника; в прямоугольном - в вершине прямого угла.

Свойства высот равнобедренного треугольника

  • Если в треугольнике две высоты равны, то треугольник - равнобедренный (теорема Штейнера - Лемуса), и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
  • Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.
  • У равностороннего треугольника все три высоты равны.

Свойства оснований высот треугольника

  • Основания высот образуют так называемый ортотреугольник , обладающий собственными свойствами.
  • Описанная около ортотреугольника окружность - окружность Эйлера . На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
  • Другая формулировка последнего свойства:
    • Теорема Эйлера для окружности девяти точек . Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром , все лежат на одной окружности (на окружности девяти точек ).
  • Теорема . В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
  • Теорема . В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.

Другие свойства высот треугольника

  • Если треугольник разносторонний (неравносторонний ), то его внутренняя биссектриса , проведённая из любой вершины, лежит между внутренними медианой и высотой, проведёнными из той же вершины.
  • Высота треугольника изогонально сопряжена диаметру (радиусу) описанной окружности , проведенному из той же самой вершины.
  • В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
  • В прямоугольном треугольнике высота , проведенная из вершины прямого угла , разбивает его на два треугольника, подобных исходному.

Свойства минимальной из высот треугольника

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

  • Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
  • Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
  • При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Основные соотношения

  • h a = b ⋅ sin ⁡ γ = c ⋅ sin ⁡ β , {\displaystyle h_{a}=b{\cdot }\sin \gamma =c{\cdot }\sin \beta ,}
  • h a = 2 ⋅ S a , {\displaystyle h_{a}={\frac {2{\cdot }S}{a}},} где S {\displaystyle S} - площадь треугольника, a {\displaystyle a} - длина стороны треугольника, на которую опущена высота .
  • h a = b ⋅ c 2 ⋅ R , {\displaystyle h_{a}={\frac {b{\cdot }c}{2{\cdot }R}},} где b ⋅ c {\displaystyle b{\cdot }c} - произведение боковых сторон, R − {\displaystyle R-} радиус описанной окружности
  • h a: h b: h c = 1 a: 1 b: 1 c = (b ⋅ c) : (a ⋅ c) : (a ⋅ b) . {\displaystyle h_{a}:h_{b}:h_{c}={\frac {1}{a}}:{\frac {1}{b}}:{\frac {1}{c}}=(b{\cdot }c):(a{\cdot }c):(a{\cdot }b).}
  • 1 h a + 1 h b + 1 h c = 1 r {\displaystyle {\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}={\frac {1}{r}}} , где r {\displaystyle r} - радиус вписанной окружности .
  • S = 1 (1 h a + 1 h b + 1 h c) ⋅ (1 h a + 1 h b − 1 h c) ⋅ (1 h a + 1 h c − 1 h b) ⋅ (1 h b + 1 h c − 1 h a) {\displaystyle S={\frac {1}{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}} , где S {\displaystyle S} - площадь треугольника.
  • a = 2 h a ⋅ (1 h a + 1 h b + 1 h c) ⋅ (1 h a + 1 h b − 1 h c) ⋅ (1 h a + 1 h c − 1 h b) ⋅ (1 h b + 1 h c − 1 h a) {\displaystyle a={\frac {2}{h_{a}{\cdot }{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}}} , a {\displaystyle a} - сторона треугольника к которой опускается высота h a {\displaystyle h_{a}} .
  • Высота равнобедренного треугольника , опущенная на основание: h c = 1 2 ⋅ 4 a 2 − c 2 , {\displaystyle h_{c}={\frac {1}{2}}{\cdot }{\sqrt {4a^{2}-c^{2}}},}
где c {\displaystyle c} - основание, a {\displaystyle a} - боковая сторона.

Теорема о высоте прямоугольного треугольника

Если высота в прямоугольном треугольнике ABC длиной h {\displaystyle h} , проведённая из вершины прямого угла, делит гипотенузу длиной c {\displaystyle c} на отрезки m {\displaystyle m} и n {\displaystyle n} , соответствующие катетам b {\displaystyle b} и a {\displaystyle a} , то верны следующие равенства.

При решении различного рода задач, как сугубо математического, так и прикладного характера (особенно в строительстве), нередко требуется определить значение высоты определенной геометрической фигуры. Как рассчитать данную величину (высоту) в треугольнике?

Если мы попарно совместим 3 точки, расположенные не на единой прямой, то полученная фигура будет треугольником. Высота – часть прямой из любой вершины фигуры, которая при пересечении с противоположной стороной образует угол 90°.

Найти высоту в разностороннем треугольнике

Определим значение высоты треугольника в случае, когда фигура имеет произвольные углы и стороны.

Формула Герона

h(a)=(2√(p(p-a)*(p-b)*(p-c)))/a, где

p – половина периметра фигуры, h(a) – отрезок к стороне a, проведенный под прямым углом к ней,

p=(a+b+c)/2 – расчет полупериметра.

В случае наличия площади фигуры для определения ее высоты можно воспользоваться соотношением h(a)=2S/a.

Тригонометрические функции

Для определения длины отрезка, который составляет при пересечении со стороной a прямой угол, можно воспользоваться следующими соотношениями: если известна сторона b и угол γ или сторона c и угол β, то h(a)=b*sinγ или h(a)=c*sinβ.
Где:
γ – угол между стороной b и a,
β – угол между стороной c и a.

Взаимосвязь с радиусом

Если исходный треугольник вписан в окружность, для определения величины высоты можно воспользоваться радиусом такой окружности. Центр ее расположен в точке, где пересекаются все 3 высоты (из каждой вершины) – ортоцентре, а расстояние от него и до вершины (любой) – радиус.

Тогда h(a)=bc/2R, где:
b, c – 2 другие стороны треугольника,
R – радиус описывающей треугольник окружности.

Найти высоту в прямоугольном треугольнике

В данном виде геометрической фигуры 2 стороны при пересечении образуют прямой угол – 90°. Следовательно, если требуется определить в нем значение высоты, то необходимо вычислить либо размер одного из катетов, либо величину отрезка, образующего с гипотенузой 90°. При обозначении:
a, b – катеты,
c – гипотенуза,
h(c) – перпендикуляр на гипотенузу.
Произвести необходимые расчеты можно с помощью следующих соотношений:

  • Пифагорова теорема:

a=√(c 2 -b 2),
b=√(c 2 -a 2),
h(c)=2S/c,т.к. S=ab/2,то h(c)=ab/c .

  • Тригонометрические функции:

a= c*sinβ,
b=c* cosβ,
h(c)=ab/c=с* sinβ* cosβ.

Найти высоту в равнобедренном треугольнике

Данная геометрическая фигура отличается наличием двух сторон равной величины и третьей – основанием. Для определения высоты, проведенной к третьей, отличной стороне, на помощь приходит теорема Пифагора. При обозначениях
a – боковая сторона,
c – основание,
h(c) – отрезок к c под углом 90°, то h(c)=1/2 √(4a 2 -c 2).


Высота треугольника это перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону, или на ее продолжение (сторона, на которую опускается перпендикуляр, в данном случае называется основанием треугольника).

В тупоугольном треугольнике две высоты падают на продолжение сторон и лежат вне треугольника. Третья внутри треугольника.

В остроугольном треугольнике все три высоты лежат внутри треугольника.

В прямоугольном треугольнике катеты служат высотами.

Как найти высоту по основанию и площади

Напомним формулу для вычисления площади треугольника. Площадь треугольника вычисляется по формуле: A = 1/2bh .

  • А — площадь треугольника
  • b — сторона треугольника, на которую опущена высота.
  • h — высота треугольника

Посмотрите на треугольник и подумайте, какие величины вам уже известны. Если вам дана площадь, обозначьте ее буквой «А» или «S». Вам также должно быть дано значение стороны, обозначьте ее буквой «b». Если вам не дана площадь и не дана сторона, воспользуйтесь другим методом.

Имейте в виду, что основанием треугольника может быть любая его сторона, на которую опущена высота (независимо от того, как расположен треугольник). Чтобы лучше понять это, представьте, что вы можете повернуть этот треугольник. Поверните его так, чтобы известная вам сторона была обращена вниз.

Например, площадь треугольника равна 20, а одна из его сторон равна 4. В этом случае «‘А = 20″‘, ‘»b = 4′».

Подставьте данные вам значения в формулу для вычисления площади (А = 1/2bh) и найдите высоту. Сначала умножьте сторону (b) на 1/2, а затем разделите площадь (А) на полученное значение. Таким образом, вы найдете высоту треугольника.

В нашем примере: 20 = 1/2(4)h

20 = 2h
10 = h

Вспомните свойства равностороннего треугольника. В равностороннем треугольнике все стороны и все углы равны (каждый угол равен 60˚). Если в таком треугольнике провести высоту, вы получите два равных прямоугольных треугольника.
Например, рассмотрим равносторонний треугольник со стороной 8.

Вспомните теорему Пифагора. Теорема Пифагора гласит, что в любом прямоугольном треугольнике с катетами «а» и «b» гипотенуза «с» равна: a2+b2=c2. Эту теорему можно использовать, чтобы найти высоту равностороннего треугольника!

Разделите равносторонний треугольник на два прямоугольных треугольника (для этого проведите высоту). Затем обозначьте стороны одного из прямоугольных треугольников. Боковая сторона равностороннего треугольника – это гипотенуза «с» прямоугольного треугольника. Катет «а» равен 1/2 стороне равностороннего треугольника, а катет «b» – это искомая высота равностороннего треугольника.

Итак, в нашем примере с равносторонним треугольником с известной стороной, равной 8: c = 8 и a = 4.

Подставьте эти значения в теорему Пифагора и вычислите b2. Сначала возведите в квадрат «с» и «а» (умножьте каждое значение само на себя). Затем вычтите a2 из c2.

42 + b2 = 82
16 + b2 = 64
b2 = 48

Извлеките квадратный корень из b2, чтобы найти высоту треугольника. Для этого воспользуйтесь калькулятором. Полученное значение и будет высотой вашего равностороннего треугольника!

b = √48 = 6,93

Как найти высоту с помощью углов и сторон

Подумайте, какие значения вам известны. Вы можете найти высоту треугольника, если вам известны значения сторон и углов. Например, если известен угол между основанием и боковой стороной. Или если известны значения всех трех сторон. Итак, обозначим стороны треугольника: «a», «b», «c», углы треугольника: «А», «В», «С», а площадь — буквой «S».

Если вам известны все три стороны, вам понадобится значение площади треугольника и формула Герона.

Если вам известны две стороны и угол между ними, можете использовать следующую формулу для нахождения площади: S=1/2ab(sinC).

Если вам даны значения всех трех сторон, используйте формулу Герона. По этой формуле придется выполнить несколько действий. Сначала нужно найти переменную «s» (мы обозначим этой буквой половину периметра треугольника). Для этого подставьте известные значения в эту формулу: s = (a+b+c)/2.

Для треугольника со сторонами а = 4, b = 3, c = 5, s = (4+3+5)/2. В результате получается: s=12/2, где s=6.

Затем вторым действием мы находим площадь (вторая часть формулы Герона). Площадь = √(s(s-a)(s-b)(s-c)). Вместо слова «площадь» вставьте эквивалентную формулу для поиска площади: 1/2bh (или 1/2ah, или 1/2ch).

Теперь найдите эквивалентное выражение для высоты (h). Для нашего треугольника будет справедливо следующее уравнение: 1/2(3)h = (6(6-4)(6-3)(6-5)). Где 3/2h=√(6(2(3(1))). Получается, 3/2h = √(36). С помощью калькулятора вычислите квадратный корень. В нашем примере: 3/2h = 6. Получается, что высота (h) равна 4, сторона b – основание.

Если по условию задачи известны две стороны и угол, вы можете использовать другую формулу. Замените площадь в формуле эквивалентным выражением: 1/2bh. Таким образом, у вас получится следующая формула: 1/2bh = 1/2ab(sinC). Ее можно упростить до следующего вида: h = a(sin C), чтобы убрать одну неизвестную переменную.

Теперь осталось решить полученное уравнение. Например, пусть «а» = 3, «С» = 40 градусов. Тогда уравнение будет выглядеть так: «h» = 3(sin 40). С помощью калькулятора и таблицы синусов подсчитайте значение «h». В нашем примере h = 1,928.