Все секреты медицины

Все секреты медицины

» » Свойства простых дробей. Основное свойство дроби. Правила. Основное свойство алгебраической дроби. Арифметические действия над десятичными дробями

Свойства простых дробей. Основное свойство дроби. Правила. Основное свойство алгебраической дроби. Арифметические действия над десятичными дробями

Долей единицы и представляется в виде \frac{a}{b} .

Числитель дроби (a) — число, находящееся над чертой дроби и показывающее количество долей, на которые была поделена единица.

Знаменатель дроби (b) — число, находящееся под чертой дроби и показывающее на сколько долей поделили единицу.

Скрыть Показать

Основное свойство дроби

Если ad=bc , то две дроби \frac{a}{b} и \frac{c}{d} считаются равными. К примеру, равными будут дроби \frac35 и \frac{9}{15} , так как 3 \cdot 15 = 15 \cdot 9 , \frac{12}{7} и \frac{24}{14} , так как 12 \cdot 14 = 7 \cdot 24 .

Из определения равенства дробей следует, что равными будут дроби \frac{a}{b} и \frac{am}{bm} , так как a(bm)=b(am) — наглядный пример применения сочетательного и переместительного свойств умножения натуральных чисел в действии.

Значит \frac{a}{b} = \frac{am}{bm} — так выглядит основное свойство дроби .

Другими словами, мы получим дробь, равную данной, умножив или разделив числитель и знаменатель исходной дроби на одно и то же натуральное число.

Сокращение дроби — это процесс замены дроби, при котором новая дробь получается равной исходной, но с меньшим числителем и знаменателем.

Сокращать дроби принято, опираясь на основное свойство дроби.

Например, \frac{45}{60}=\frac{15}{20} (числитель и знаменатель делится на число 3 ); полученную дробь снова можно сократить, разделив на 5 , то есть \frac{15}{20}=\frac 34 .

Несократимая дробь — это дробь вида \frac 34 , где числитель и знаменатель являются взаимно простыми числами. Основная цель сокращения дроби — сделать дробь несократимой.

Приведение дробей к общему знаменателю

Возьмем в качестве примера две дроби: \frac{2}{3} и \frac{5}{8} с разными знаменателями 3 и 8 . Для того, чтобы привести данные дроби к общему знаменателю и сначала перемножим числитель и знаменатель дроби \frac{2}{3} на 8 . Получаем следующий результат: \frac{2 \cdot 8}{3 \cdot 8} = \frac{16}{24} . Затем умножаем числитель и знаменатель дроби \frac{5}{8} на 3 . Получаем в итоге: \frac{5 \cdot 3}{8 \cdot 3} = \frac{15}{24} . Итак, исходные дроби приведены к общему знаменателю 24 .

Арифметические действия над обыкновенными дробями

Сложение обыкновенных дробей

а) При одинаковых знаменателях числитель первой дроби складывают с числителем второй дроби, оставляя знаменатель прежним. Как видно на примере:

\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b} ;

б) При разных знаменателях дроби сначала приводят к общему знаменателю, а затем выполняют сложение числителей по правилу а) :

\frac{7}{3}+\frac{1}{4}=\frac{7 \cdot 4}{3}+\frac{1 \cdot 3}{4}=\frac{28}{12}+\frac{3}{12}=\frac{31}{12} .

Вычитание обыкновенных дробей

а) При одинаковых знаменателях из числителя первой дроби вычитают числитель второй дроби, оставляя знаменатель прежним:

\frac{a}{b}-\frac{c}{b}=\frac{a-c}{b} ;

б) Если же знаменатели дробей различны, то сначала дроби приводят к общему знаменателю, а затем повторяют действия как в пункте а) .

Умножение обыкновенных дробей

Умножение дробей подчиняется следующему правилу:

\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d} ,

то есть перемножают отдельно числители и знаменатели.

Например:

\frac{3}{5} \cdot \frac{4}{8} = \frac{3 \cdot 4}{5 \cdot 8}=\frac{12}{40} .

Деление обыкновенных дробей

Деление дробей производят следующим способом:

\frac{a}{b} : \frac{c}{d}= \frac{ad}{bc} ,

то есть дробь \frac{a}{b} умножается на дробь \frac{d}{c} .

Пример: \frac{7}{2} : \frac{1}{8}=\frac{7}{2} \cdot \frac{8}{1}=\frac{7 \cdot 8}{2 \cdot 1}=\frac{56}{2} .

Взаимно обратные числа

Если ab=1 , то число b является обратным числом для числа a .

Пример: для числа 9 обратным является \frac{1}{9} , так как 9 \cdot \frac{1}{9}=1 , для числа 5 — \frac{1}{5} , так как 5 \cdot \frac{1}{5}=1 .

Десятичные дроби

Десятичной дробью называется правильная дробь, знаменатель которой равен 10, 1000, 10\,000, ..., 10^n .

Например: \frac{6}{10}=0,6;\enspace \frac{44}{1000}=0,044 .

Таким же способом пишутся неправильные со знаменателем 10^n или смешанные числа.

Например: 5\frac{1}{10}=5,1;\enspace \frac{763}{100}=7\frac{63}{100}=7,63 .

В виде десятичной дроби представляется любая обыкновенная дробь со знаменателем, который является делителем некой степени числа 10 .

Пример: 5 — делитель числа 100 , поэтому дробь \frac{1}{5}=\frac{1 \cdot 20}{5 \cdot 20}=\frac{20}{100}=0,2 .

Арифметические действия над десятичными дробями

Сложение десятичных дробей

Для сложения двух десятичных дробей, нужно их расположить так, чтобы друг под другом оказались одинаковые разряды и запятая под запятой, а затем выполнить сложение дробей как обычных чисел.

Вычитание десятичных дробей

Выполняется аналогично сложению.

Умножение десятичных дробей

При умножении десятичных чисел достаточно перемножить заданные числа, не обращая внимания на запятые (как натуральные числа), а в полученном ответе запятой справа отделяется столько цифр, сколько их стоит после запятой в обоих множителях суммарно.

Давайте выполним умножение 2,7 на 1,3 . Имеем 27 \cdot 13=351 . Отделяем справа две цифры запятой (у первого и второго числа — одна цифра после запятой; 1+1=2 ). В итоге получаем 2,7 \cdot 1,3=3,51 .

Если в полученном результате получается меньше цифр, чем надо отделить запятой, то впереди пишут недостающие нули, например:

Для умножения на 10 , 100 , 1000 , надо в десятичной дроби перенести запятую на 1 , 2 , 3 цифры вправо (в случае необходимости справа приписывается определенное число нулей).

Например: 1,47 \cdot 10\,000 = 14 700 .

Деление десятичных дробей

Деление десятичной дроби на натуральное число производят также, как и деление натурального числа на натуральное. Запятая в частном ставится после того, как закончено деление целой части.

Если целая часть делимого меньше делителя, то в ответе получается нуль целых, например:

Рассмотрим деление десятичной дроби на десятичную. Пусть нужно разделить 2,576 на 1,12 . Первым делом, умножим делимое и делитель дроби на 100 , то есть перенесем запятую вправо в делимом и делителе на столько знаков, сколько их стоит в делителе после запятой (в данном примере на две). Затем нужно выполнить деление дроби 257,6 на натуральное число 112 , то есть задача сводится к уже рассмотренному случаю:

Бывает так, что не всегда получается конечная десятичная дробь при делении одного числа на другое. В результате получается бесконечная десятичная дробь. В таких случаях переходят к обыкновенным дробям.

2,8: 0,09= \frac{28}{10} : \frac {9}{100}= \frac{28 \cdot 100}{10 \cdot 9}=\frac{280}{9}=31 \frac{1}{9} .

На данном уроке будет рассмотрено основное свойство алгебраической дроби. Умение правильно и без ошибок применять это свойство является одним из важнейших базовых умений во всем курсе школьной математики и будет встречаться не только на протяжении изучения данной темы, но и практически во всех изучаемых в дальнейшем разделах математики. Ранее уже было изучено сокращение обыкновенных дробей, а на данном уроке будет рассмотрено сокращение рациональных дробей. Несмотря на довольно большое внешнее отличие, существующее между рациональными и обыкновенными дробями, у них очень много общего, а именно - и обыкновенным, и рациональным дробям присущи одинаковое основное свойство и общие правила выполнения арифметических действий. В рамках урока мы столкнемся с понятиями: сокращение дроби, умножение и деление числителя и знаменателя на одно и то же выражение - и рассмотрим примеры.

Вспомним основное свойство обыкновенной дроби : значение дроби не изменится, если ее числитель и знаменатель одновременно умножить или разделить на одно и то же отличное от нуля число. Напомним, что деление числителя и знаменателя дроби на одно и то же отличное от нуля число называется сокращением .

Например: , при этом значение дробей не изменяется. Однако зачастую при применении данного свойства многие допускают стандартные ошибки:

1) - в приведенном примере допущена ошибка деления только одного слагаемого из числителя на 2, а не всего числителя. Правильная последовательность действий выглядит таким образом: или .

2) - здесь мы видим похожую ошибку, однако, кроме этого еще в результате деления получен 0, а не 1, что является еще более частой и грубой ошибкой.

Теперь необходимо перейти к рассмотрению алгебраической дроби . Вспомним это понятие из предыдущего урока.

Определение. Рациональная (алгебраическая) дробь - дробное выражение вида , где - многочлены. - числитель, - знаменатель.

Алгебраические дроби являются, в некотором смысле, обобщением обыкновенных дробей и над ними можно проводить те же операции, что и над обыкновенными дробями.

И числитель, и знаменатель дроби можно умножать и делить на один и тот же многочлен (одночлен) или число, отличное от нуля. Это будет тождественное преобразование алгебраической дроби. Вспомним, что как и ранее, деление числителя и знаменателя дроби на одно и то же отличное от нуля выражение называется сокращением .

Основное свойство алгебраической дроби позволяет сокращать дроби и приводить их к наименьшему общему знаменателю.

Для сокращения обыкновенных дробей мы прибегали к основной теореме арифметики , разлагали и числитель, и знаменатель на простые множители.

Определение. Простое число - натуральное число, которое делится только на единицу и само себя. Все остальные натуральные числа называются составными. 1 не является ни простым, ни составным числом.

Пример 1. а), где множители, на которые разложены числители и знаменатели указанных дробей, являются простыми числами.

Ответ. ; .

Следовательно, для сокращения дробей необходимо предварительно разложить на множители числитель и знаменатель дроби, а затем разделить их на общие множители. Т.е. следует владеть методами разложения многочленов на множители.

Пример 2. Сократить дробь а), б) , в) .

Решение. а) . Необходимо заметить, что в числителе находится полный квадрат, а в знаменателе разность квадратов. После сокращения необходимо указать, что , во избежание деления на ноль.

б) . В знаменателе выносится общий числовой множитель, что полезно делать практически в любом случае, когда это возможно. Аналогично с предыдущим примером указываем, что .

в) . В знаменателе выносим за скобки минус (или, формально, ). Не забываем, что при сокращении .

Ответ. ;; .

Теперь приведём пример на приведение к общему знаменателю, делается это аналогично с обыкновенными дробями.

Пример 3.

Решение. Для нахождения наименьшего общего знаменателя необходимо найти наименьшее общее кратное (НОК ) двух знаменателей, т.е. НОК(3;5). Иными словами, найти наименьшее число, которое делится на 3 и на 5 одновременно. Очевидно, что это число 15, записать это можно таким образом: НОК(3;5)=15 - это и будет общий знаменатель указанных дробей.

Чтобы преобразовать знаменатель 3 в 15, его необходимо умножить на 5, а для преобразования 5 в 15, его необходимо умножить на 3. По основному свойству алгебраической дроби следует умножить на те же числа и соответствующие числители указанных дробей.

Ответ. ; .

Пример 4. Привести к общему знаменателю дроби и .

Решение. Проведем аналогичные предыдущему примеру действия. Наименьшее общее кратное знаменателей НОК(12;18)=36. Приведем к этому знаменателю обе дроби:

и .

Ответ. ; .

Теперь рассмотрим примеры, демонстрирующие применение техники сокращения дробей для их упрощения в более сложных случаях.

Пример 5. Вычислить значение дроби: а) , б) , в) .

а) . При сокращении пользуемся правилом деления степеней .

После того, как мы повторили использование основного свойства обыкновенной дроби , можно перейти к рассмотрению алгебраических дробей.

Пример 6. Упростить дробь и вычислить при заданных значениях переменных: а) ; , б) ;

Решение. При подходе к решению возможен следующий вариант - сразу же подставить значения переменных и начать расчет дроби, но в таком случае решение сильно усложняется и необходимое на его решение время увеличивается, не говоря уже об опасности ошибиться в сложных вычислениях. Поэтому удобно сначала упростить выражение в буквенном виде, а затем уже подставить значения переменных.

а) . При сокращении на множитель необходимо проверить, не обращается ли он в ноль в указанных значениях переменных. При подстановке получаем , что дает возможность сокращения на данный множитель.

б) . В знаменателе выносим минус, как мы это уже делали в примере 2 . При сокращении на снова проверяем не делим ли мы на ноль: .

Ответ. ; .

Пример 7. Привести к общему знаменателю дроби а) и , б) и , в) и .

Решение. а) В данном случае подойдем к решению следующим образом: не будем пользоваться понятием НОК, как во втором примере, а просто умножим знаменатель первой дроби на знаменатель второй и наоборот - это позволит привести дроби к одинаковому знаменателю. Конечно же, не забываем при этом умножать и числители дробей на такие же выражения.

. В числителе раскрыли скобки, а в знаменателе воспользовались формулой разности квадратов.

. Аналогичные действия.

Видно, что такой способ позволяет умножить знаменатель и числитель одной дроби на тот элемент из знаменателя второй дроби, которого не хватает. С другой дробью проводятся аналогичные действия, и знаменатели приводятся к общему.

б) Проделаем аналогичные с предыдущим пунктом действия:

. Умножим числитель и знаменатель на тот элемент знаменателя второй дроби, которого не хватало (в данном случае на весь знаменатель).

. Аналогично.

в) . В данном случае мы умножили на 3 (множитель который присутствует в знаменателе второй дроби и отсутствует в первой).

.

Ответ. а) ; , б) ; , в) ; .

На данном уроке мы изучили основное свойство алгебраической дроби и рассмотрели основные задачи с его использованием. На следующем уроке мы более подробно разберем приведение дробей к общему знаменателю с использованием формул сокращенного умножения и метода группировки при разложении на множители.

Список литературы

  1. Башмаков М.И. Алгебра 8 класс. - М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.
  1. ЕГЭ по математике ().
  2. Фестиваль педагогических идей «Открытый урок» ().
  3. Математика в школе: поурочные планы ().

Домашнее задание

Из курса алгебры школьной программы переходим к конкретике. В этой статье мы подробно изучим особый вид рациональных выражений – рациональные дроби , а также разберем, какие характерные тождественные преобразования рациональных дробей имеют место.

Сразу отметим, что рациональные дроби в том смысле, в котором мы их определим ниже, в некоторых учебниках алгебры называют алгебраическими дробями. То есть, в этой статье мы под рациональными и алгебраическими дробями будем понимать одно и то же.

По обыкновению начнем с определения и примеров. Дальше поговорим про приведение рациональной дроби к новому знаменателю и о перемене знаков у членов дроби. После этого разберем, как выполняется сокращение дробей. Наконец, остановимся на представлении рациональной дроби в виде суммы нескольких дробей. Всю информацию будем снабжать примерами с подробными описаниями решений.

Навигация по странице.

Определение и примеры рациональных дробей

Рациональные дроби изучаются на уроках алгебры в 8 классе. Мы будем использовать определение рациональной дроби, которое дается в учебнике алгебры для 8 классов Ю. Н. Макарычева и др.

В данном определении не уточняется, должны ли многочлены в числителе и знаменателе рациональной дроби быть многочленами стандартного вида или нет. Поэтому, будем считать, что в записях рациональных дробей могут содержаться как многочлены стандартного вида, так и не стандартного.

Приведем несколько примеров рациональных дробей . Так , x/8 и - рациональные дроби. А дроби и не подходят под озвученное определение рациональной дроби, так как в первой из них в числителе стоит не многочлен, а во второй и в числителе и в знаменателе находятся выражения, не являющиеся многочленами.

Преобразование числителя и знаменателя рациональной дроби

Числитель и знаменатель любой дроби представляют собой самодостаточные математические выражения, в случае рациональных дробей – это многочлены, в частном случае – одночлены и числа. Поэтому, с числителем и знаменателем рациональной дроби, как и с любым выражением, можно проводить тождественные преобразования. Иными словами, выражение в числителе рациональной дроби можно заменять тождественно равным ему выражением, как и знаменатель.

В числителе и знаменателе рациональной дроби можно выполнять тождественные преобразования . Например, в числителе можно провести группировку и приведение подобных слагаемых, а в знаменателе – произведение нескольких чисел заменить его значением. А так как числитель и знаменатель рациональной дроби есть многочлены, то с ними можно выполнять и характерные для многочленов преобразования, например, приведение к стандартному виду или представление в виде произведения.

Для наглядности рассмотрим решения нескольких примеров.

Пример.

Преобразуйте рациональную дробь так, чтобы в числителе оказался многочлен стандартного вида, а в знаменателе – произведение многочленов.

Решение.

Приведение рациональных дробей к новому знаменателю в основном применяется при сложении и вычитании рациональных дробей .

Изменение знаков перед дробью, а также в ее числителе и знаменателе

Основное свойство дроби можно использовать для смены знаков у членов дроби. Действительно, умножение числителя и знаменателя рациональной дроби на -1 равносильно смене их знаков, а в результате получится дробь, тождественно равная данной. К такому преобразованию приходится достаточно часто обращаться при работе с рациональными дробями.

Таким образом, если одновременно изменить знаки у числителя и знаменателя дроби, то получится дробь, равная исходной. Этому утверждению отвечает равенство .

Приведем пример. Рациональную дробь можно заменить тождественно равной ей дробью с измененными знаками числителя и знаменателя вида .

С дробями можно провести еще одно тождественное преобразование, при котором меняется знак либо в числителе, либо в знаменателе. Озвучим соответствующее правило. Если заменить знак дроби вместе со знаком числителя или знаменателя, то получится дробь, тождественно равная исходной. Записанному утверждению соответствуют равенства и .

Доказать эти равенства не составляет труда. В основе доказательства лежат свойства умножения чисел. Докажем первое из них: . С помощью аналогичных преобразований доказывается и равенство .

Например, дробь можно заменить выражением или .

В заключение этого пункта приведем еще два полезных равенства и . То есть, если изменить знак только у числителя или только у знаменателя, то дробь изменит свой знак. Например, и .

Рассмотренные преобразования, позволяющие изменять знак у членов дроби, часто применяются при преобразовании дробно рациональных выражений.

Сокращение рациональных дробей

В основе следующего преобразования рациональных дробей, имеющего название сокращение рациональных дробей, лежит все тоже основное свойство дроби. Этому преобразованию соответствует равенство , где a , b и c – некоторые многочлены, причем b и c - ненулевые.

Из приведенного равенства становится понятно, что сокращение рациональной дроби подразумевает избавление от общего множителя в ее числителе и знаменателе.

Пример.

Сократите рациональную дробь .

Решение.

Сразу виден общий множитель 2 , выполним сокращение на него (при записи общие множители, на которые сокращают, удобно зачеркивать). Имеем . Так как x 2 =x·x и y 7 =y 3 ·y 4 (при необходимости смотрите ), то понятно, что x является общим множителем числителя и знаменателя полученной дроби, как и y 3 . Проведем сокращение на эти множители: . На этом сокращение завершено.

Выше мы выполняли сокращение рациональной дроби последовательно. А можно было выполнить сокращение в один шаг, сразу сократив дробь на 2·x·y 3 . В этом случае решение выглядело бы так: .

Ответ:

.

При сокращении рациональных дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель рациональной дроби разложить на множители. Если общего множителя нет, то исходная рациональная дробь не нуждается в сокращении, в противном случае – проводится сокращение.

В процессе сокращения рациональных дробей могут возникать различные нюансы. Основные тонкости на примерах и в деталях разобраны в статье сокращение алгебраических дробей .

Завершая разговор о сокращении рациональных дробей, отметим, что это преобразование является тождественным, а основная сложность в его проведении заключается в разложении на множители многочленов в числителе и знаменателе.

Представление рациональной дроби в виде суммы дробей

Достаточно специфическим, но в некоторых случаях очень полезным, оказывается преобразование рациональной дроби, заключающееся в ее представлении в виде суммы нескольких дробей, либо сумме целого выражения и дроби.

Рациональную дробь, в числителе которой находится многочлен, представляющий собой сумму нескольких одночленов, всегда можно записать как сумму дробей с одинаковыми знаменателями, в числителях которых находятся соответствующие одночлены. Например, . Такое представление объясняется правилом сложения и вычитания алгебраических дробей с одинаковыми знаменателями .

Вообще, любую рациональную дробь можно представить в виде суммы дробей множеством различных способов. Например, дробь a/b можно представить как сумму двух дробей – произвольной дроби c/d и дроби, равной разности дробей a/b и c/d . Это утверждение справедливо, так как имеет место равенство . К примеру, рациональную дробь можно представить в виде суммы дробей различными способами: Представим исходную дробь в виде суммы целого выражения и дроби. Выполнив деление числителя на знаменатель столбиком, мы получим равенство . Значение выражение n 3 +4 при любом целом n является целым числом. А значение дроби является целым числом тогда и только тогда, когда ее знаменатель равен 1 , −1 , 3 или −3 . Этим значениям отвечают значения n=3 , n=1 , n=5 и n=−1 соответственно.

Ответ:

−1 , 1 , 3 , 5 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 13-е изд., испр. - М.: Мнемозина, 2009. - 160 с.: ил. ISBN 978-5-346-01198-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

В математике дробь - это число, состоящее из одной или нескольких частей (долей) единицы. По форме записи дроби делятся на обыкновенные (пример \frac{5}{8}) и десятичные (например 123,45).

Определение. Обыкновенная дробь (или простая дробь)

Обыкновенной (простой) дробью называется число вида \pm\frac{m}{n} где m и n – натуральные числа. Число m называется числителем этой дроби, а число n – её знаменателем .

Горизонтальная или косая черта обозначает знак деления, то есть \frac{m}{n}={}^m/n=m:n

Обыкновенные дроби делятся на два вида: правильные и неправильные.

Определение. Правильная и неправильная дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Например, \frac{9}{11} , ведь 9

Неправильной называется дробь, у которой модуль числителя больше или равен модулю знаменателя. Такая дробь представляет собой рациональное число, по модулю большее или равное единице. Примером будут дроби \frac{11}{2} , \frac{2}{1} , -\frac{7}{5} , \frac{1}{1}

Наряду с неправильной дробью существует иная запись числа, которая называется смешанной дробью (смешанным числом). Такая дробь не является обыкновенной.

Определение. Смешанная дробь (смешанное число)

Смешанной дробью называется дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби. Например, 2\frac{5}{7}

(запись в виде смешанного числа) 2\frac{5}{7}=2+\frac{5}{7}=\frac{14}{7}+\frac{5}{7}=\frac{19}{7} (запись в виде неправильной дроби)

Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные. Сформируем признак равенства двух обыкновенных дробей.

Определение. Признак равенства дробей

Две дроби \frac{a}{b} и \frac{c}{d} являются равными , если a\cdot d=b\cdot c . Например, \frac{2}{3}=\frac{8}{12} так как 2\cdot12=3\cdot8

Из указанного признака следует основное свойство дроби.

Свойство. Основное свойство дроби

Если числитель и знаменатель данной дроби умножить или разделить на одно и то же число, неравное нулю, то получится дробь, равная данной.

\frac{A}{B}=\frac{A\cdot C}{B\cdot C}=\frac{A:K}{B:K};\quad C \ne 0,\quad K \ne 0

С помощью основного свойства дроби можно заменить данную дробь другой дробью, равной данной, но с меньшими числителем и знаменателем. Такая замена называется сокращением дроби. Например, \frac{12}{16}=\frac{6}{8}=\frac{3}{4} (здесь числитель и знаменатель разделили сначала на 2, а потом ещё на 2). Сокращение дроби можно провести тогда и только тогда, когда её числитель и знаменатель не являются взаимно простыми числами. Если же числитель и знаменатель данной дроби взаимно просты, то дробь сократить нельзя, например, \frac{3}{4} – несократимая дробь.

Правила для положительных дробей:

Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, \frac{3}{15}

Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, \frac{4}{11}>\frac{4}{13} .

Чтобы сравнить две дроби с разными числителями и знаменателями, нужно преобразовать обе дроби так, чтобы их знаменатели стали одинаковыми. Такое преобразование называется приведением дробей к общему знаменателю.

В данной статье разберем, в чем заключается основное свойство дроби, сформулируем его, приведем доказательство и наглядный пример. Затем рассмотрим, как применять основное свойство дроби при совершении действий сокращения дробей и приведения дробей к новому знаменателю.

Все обыкновенные дроби обладают важнейшим свойством, которое мы и называем основным свойством дроби, и звучит оно следующим образом:

Определение 1

Если числитель и знаменатель одной дроби умножить или разделить на одно и то же натуральное число, то в итоге получится дробь, равная заданной.

Представим основное свойство дроби в виде равенства. Для натуральных чисел a , b и m будут справедливыми равенства:

a · m b · m = a b и a: m b: m = a b

Рассмотрим доказательство основного свойства дроби. Опираясь на свойства умножения натуральных чисел и свойства деления натуральных чисел, запишем равенства: (a · m) · b = (b · m) · a и (a: m) · b = (b: m) · a . Таким образом, дроби a · m b · m и a b , а также a: m b: m и a b являются равными по определению равенства дробей.

Разберем пример, который графически проиллюстрирует основное свойство дроби.

Пример 1

Допустим, у нас есть квадрат, разделенный на 9 «больших» частей-квадратов. Каждый «большой» квадрат разделен на 4 меньших по размеру. Возможно сказать, что заданный квадрат поделен на 4 · 9 = 36 «маленьких» квадратов. Выделим цветом 5 «больших» квадратов. При этом окрашенными будут 4 · 5 = 20 «маленьких» квадратов. Покажем рисунок, демонстрирующий наши действия:

Окрашенная часть – это 5 9 исходной фигуры или 20 36 , что является тем же самым. Таким образом, дроби 5 9 и 20 36 являются равными: 5 9 = 20 36 или 20 36 = 5 9 .

Эти равенства, а также равенства 20 = 4 · 5 , 36 = 4 · 9 , 20: 4 = 5 и 36: 4 = 9 дают возможность сделать вывод, что 5 9 = 5 · 4 9 · 4 и 20 36 = 20 · 4 36 · 4 .

Чтобы закрепить теорию, разберем решение примера.

Пример 2

Задано, что числитель и знаменатель некоторой обыкновенной дроби умножили на 47 , после чего эти числитель и знаменатель разделили на 3 . Равна ли полученная в итоге этих действий дробь заданной?

Решение

Опираясь на основное свойство дроби, можно говорить о том, что умножение числителя и знаменателя заданной дроби на натуральное число 47 даст в результате дробь, равную исходной. То же самое мы можем утверждать, производя дальнейшее деление на 3 . В конечном счете мы получим дробь, равную заданной.

Ответ: да, полученная в итоге дробь будет равна исходной.

Применение основного свойства дроби

Основное свойство применяется, когда нужно привести дроби к новому знаменателю и при сокращении дробей.

Приведение дроби к новому знаменателю – это действие замены заданной дроби равной ей дробью, но с большими числителем и знаменателем. Чтобы привести дробь к новому знаменателю, нужно умножить числитель и знаменатель дроби на необходимое натуральное число. Действия с обыкновенными дробями были бы невозможны без способа приводить дроби к новому знаменателю.

Определение 2

Сокращение дроби – действие перехода к новой дроби, равной заданной, но с меньшими числителем и знаменателем. Чтобы сократить дробь, нужно разделить числитель и знаменатель дроби на одно и то же необходимое натуральное число, которое будет называться общим делителем .

Возможны случаи, когда подобного общего делителя нет, тогда говорят о том, что исходная дробь несократима или не подлежит сокращению. В частности, сокращение дроби при помощи наибольшего общего делителя приведет дробь к несократимому виду.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter